
Contents lists available at ScienceDirect

Children and Youth Services Review

journal homepage: www.elsevier.com/locate/childyouth

Discussion

Risk assessment and decision making in child protective services: Predictive
risk modeling in context

Stephanie Cuccaro-Alamina,b, Regan Fousta, Rhema Vaithianathanc, Emily Putnam-Hornsteina,b,⁎

a Children's Data Network, Suzanne Dworak-Peck School of Social Work, University of Southern California, USA
b California Child Welfare Indicators Project, School of Social Welfare, University of California at Berkeley, USA
c Centre for Social Data Analytics, Auckland University of Technology, New Zealand

A R T I C L E I N F O

Keywords:
Predictive risk modeling
Risk assessment
Child welfare
Actuarial models

A B S T R A C T

In an era in which child protective service agencies face increased demands on their time and in an environment
of stable or shrinking resources, great interest exists in improving risk assessment and decision support. In this
article, we review the literature and provide a context for predictive risk modeling in the current risk assessment
paradigm in child protective services. We describe how predictive analytics or predictive risk modeling using
linked administrative data may provide a useful complement to current approaches. We argue that leveraging
technology and using existing data to improve initial triage and assessment decisions will enable caseworkers to
focus on what they do best: engaging families and providing needed services.

1. Introduction

In 2014, the U.S. child protective services (CPS) system received 3.6
million allegations of child abuse and neglect, involving an estimated
6.6 million children. Of these, approximately 3.2 million children ex-
perienced an investigation or received an alternative response and an
estimated 702,000 were found to have been victims of abuse or neglect.
From there, 21% (n= 147,462) entered foster care (U.S. Department of
Health and Human Services, 2016). Thus, every day through a series of
decisions often made by multiple individuals, children and families are
referred to CPS and then triaged. Yet a comprehensive understanding of
how most effectively to screen and then serve children and their fa-
milies is still emerging. Correctly ascertaining levels of acute and
chronic maltreatment risk among the millions of children referred to
CPS agencies each year is no easy task, nor is matching and tailoring
services to meet the needs of these children and families.

The risk factors for child maltreatment have been well documented for
decades. Multiple individual, family, and community risks are often present
for these vulnerable children, including poverty (Gil, 1971;
Jones&McCurdy, 1992; Pelton, 1989, 1994; Sedlak&Broadhurst, 1996;
Wolock&Horowitz, 1979) and its many correlates, such as female-headed
families (Brown, Cohen, Johnson, & Salzinger, 1998; Gelles, 1989, 1992;
Gillham et al., 1998; Sedlak&Broadhurst, 1996), low parental education
(Brown et al., 1998; Kotch et al., 1995; Zuravin&DiBlasio, 1996;
Zuravin&Grief, 1989), unemployment (Gelles, 1989; Gillham et al., 1998;
Kotch et al., 1995), welfare receipt (Brown et al., 1998; Jones&McCurdy,

1992; Needell, Cuccaro-Alamin, Brookhart, & Lee, 1999;
Paxson&Waldfogel, 2002), and impoverished neighborhoods (Coulton,
Crampton, Irwin, Spilsbury, &Korbin, 2007; Coulton, Korbin, Su, &Chow,
1995; Drake&Pandey, 1996).

Characteristics observable and universally collected at the time of birth
also have been documented as related to risk of CPS referral, including early
maternal age, late or absent prenatal care, low birth weight, birth ab-
normalities, and positive toxicology (Hussey, Chang, &Kotch, 2006;
Putnam-Hornstein&Needell, 2011; Stith et al., 2009). Higher rates of CPS
reporting also have been found among Black and Native American children
relative to their White and Hispanic counterparts (Ards, Myers, Malkis,
Sugrue, & Zhou, 2003; Drake, Lee, & Jonson-Reid, 2009; Font,
Berger, & Slack, 2012; Putnam-Hornstein&Needell, 2011). Although child
maltreatment is found disproportionately among non-White and teen-parent
families, considerable evidence suggests that socioeconomic status also may
confound these relationships because minorities and adolescent parents are
disproportionately likely to be single and poor (Bolton, Laner, &Kane, 1980;
Garfinkel &McLanahan, 1986; Gil, 1971; Kinard&Klerman, 1980;
Saunders, Nelson, & Landsman, 1993).

Despite the wealth of literature regarding risk factors for child
maltreatment, the accurate identification of referred children for whom
the threat of maltreatment is most immediate and consequential has
proven difficult. High rates of subsequent maltreatment referrals among
children with initially unfounded allegations (Drake, 1996; Fluke,
Shusterman, Hollinshead, & Yuan, 2005; Jonson-Reid, Drake,
Chung, &Way, 2003) and increased risk of child maltreatment deaths
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despite CPS involvement (Barth & Blackwell, 1998; Jonson-Reid,
Chance, & Drake, 2007; Putnam-Hornstein, 2011; Putnam-Hornstein,
Cleves, Licht, & Needell, 2013; Sabotta & Davis, 1992;
Sorenson & Peterson, 1994) point to the enduring struggle to accurately
assess children's current and future risk of abuse and neglect.

For nearly three decades, risk assessment tools have been employed
in CPS to help improve the accuracy of workers' frontline decision
making. Although these tools are generally considered more effective
than clinical attempts to weight the complex factors associated with a
child's risk of harm, there are numerous operational and statistical
limitations to such operator-driven assessments. These include: (a)
questionable tool implementation fidelity; (b) the time and expense of
using these tools on repeated occasions; (c) the absence of tool vali-
dation for the populations to which they are administered; (d) over-
reliance on static or historical risk factors; (e) limited predictive accu-
racy; and (f) a crude stratification of risk based on arbitrary thresholds
(e.g., low, medium, high).

In short, the success of operator-driven risk assessment tools in the
world of child protection relies on a frontline worker who is adequately
trained and motivated to properly employ them (which is, at least an-
ecdotally, a notable barrier in organizations) and who has the time to
administer the tool in a fashion such that new data are incorporated
into the risk or safety assessment. Importantly, the value of risk as-
sessment tools are also premised on their utility—specifically their
ability to influence decision making to facilitate better outcomes for
children (D'Andrade, Benton, & Austin, 2005; Russell, 2015).

In this article, we review the strengths and weaknesses of the cur-
rent risk assessment paradigm in CPS practice. We then describe pre-
dictive analytics or predictive risk modeling (PRM) using linked ad-
ministrative data as an alternative method of prospective risk
assessment that may help overcome many of the shortcomings of cur-
rent approaches. In an era in which child protective service agencies
face increased demands on their time and in an environment of stable
or shrinking resources, great interest exists in improving risk assess-
ment and decision support. We argue that leveraging technology and
using existing data to improve initial triage and assessment decisions
will enable caseworkers focus on what they do best: engaging families
and providing needed services.

2. Risk assessment in child protection

The accurate assessment of child safety and risk is foundational to
effective CPS practice (Gambrill & Shlonsky, 2000; Gelles & Kim, 2013;
Rycus &Hughes, 2003). The inaccurate identification of risk can have
significant implications for children and families that come into contact
with the CPS system (Gambrill & Shlonsky, 2000; Shlonsky &Wagner,
2005). For instance, children and families misidentified as low risk may
not receive necessary preventive services and may go on to experience
abuse and neglect. Conversely, those misidentified as high risk may be
subjected to unnecessary involvement with social services, disruption of
the family environment, and loss of family autonomy
(Gambrill & Shlonsky, 2000).

Risk assessment in CPS is largely a human enterprise. Clinical
judgment or naturalistic decision making (Kahneman & Klein, 2009),
however, has been shown to be prone to both human error and bias.
Practitioners have difficulty processing large amounts of available in-
formation and often used flawed heuristic strategies instead of rational
models. Practitioners' personal beliefs and biases and the culture of the
agency can also affect assessment (Ægisdóttir et al., 2006; Dawes,
Faust, &Meehl, 1989; Kahneman, Slovic, & Tversky, 1982;
Kahneman & Tversky, 1973; Meehl, 1954; Nisbett & Ross, 1980). Given
the well-documented limitations of clinical judgment, standardized risk
assessment tools have been developed to help improve the accuracy of
predictions of maltreatment recurrence (Rycus &Hughes, 2003;
Shlonsky &Wagner, 2005). These tools combine risk factors related to
child maltreatment risk to provide decision support to practitioners,

and have proliferated during the last 30 years (Child Welfare League of
America [CWLA], 2005).

2.1. Standardized tools

Two general categories of tools have been developed in an effort to
help standardize CPS risk and safety assessments—theoretical or con-
sensus-based and actuarial tools (Baird, Wagner, Healy, & Johnson,
1999; English & Pecora, 1994). Theoretical or consensus-based tools are
typically guided by a theoretical approach and examine child mal-
treatment risk factors identified by experts through clinical experience
or research. These risk factors are often combined into an instrument or
scale that can assist practitioners with information gathering during
assessment. Clinicians use these data to help determine recidivism risk.
Despite their utility, such tools are often criticized as less precise,
subjective, and inconsistent (D'Andrade et al., 2005).

Actuarial tools examine risk factors that are empirically related to
child maltreatment and they are typically validated statistically (CWLA,
2005; Gambrill & Shlonsky, 2000; Shlonsky &Wagner, 2005). Unlike
theoretical or consensus-based tools, actuarial tools can incorporate risk
factors not theoretically related to abuse and neglect. When these tools
are administered, weights are given to specific factors and combined
into scales, resulting in specific probability estimates for recurrence
risk. Actuarial tools are often criticized for failing to take into account
the role of expert clinical judgment or causal theories (Grove &Meehl,
1996; Schwalbe, 2004). Additionally, they may ignore the role of ser-
vices or other strengths in mitigating risk (D'Andrade et al., 2005).

Today, both categories of standardized risk assessment tools are
considered more accurate than clinical judgment alone in predicting the
recurrence of child maltreatment (Dawes et al., 1989;
DePanfilis & Girvin, 2005; Grove &Meehl, 1996; Grove, Zald, Lebow,
Snitz, & Nelson, 2000; Johnson & L'Esperance, 1984; Munro, 1999;
Shlonsky & Friend, 2007; Shlonsky &Wagner, 2005). As a result, during
the past two decades, the majority of state CPS agencies have adopted
standardized risk assessment tools. A 2011 national survey conducted
by Casey Family Programs found that the most widely used tools in-
cluded Structured Decision Making (SDM) from the National Center on
Crime and Delinquency (NCCD), the ACTION for Child Protection and
National Resource Center for Child Protective Services model, and the
Signs of Safety model (Casey Family Programs, 2011; Harbert & Tucker-
Tatlow, 2012).

2.2. Standardized tool performance

Among standardized tools, actuarial models have generally been
shown to be more effective than theoretical or consensus-based models
in predicting child maltreatment recurrence (Baird &Wagner, 2000;
Baird et al., 1999; Begle, Dumas, & Hanson, 2010; D'Andrade et al.,
2005). In 2005, the Bay Area Social Services Consortium conducted a
structured performance review of the five most widely used tools1 for
determining recurrence of abuse and neglect (D'Andrade et al., 2005).
Five areas of instrument performance were assessed: predictive and
convergent validity, interrater reliability, outcomes, and racial and
ethnic group differences. Findings suggested that actuarial tools had
greater predictive validity and interrater reliability than consensus-
based tools in each area. Overall, the authors concluded that the im-
plementation of actuarial tools has improved the accuracy of workers'
risk assessment.

The actuarial tool most widely used today is the SDM system de-
veloped by the NCCD. The SDM system includes 10 decision support

1 These include (a) the Washington Risk Assessment Matrix; (b) the California Family
Assessment Factor Analysis (or the “Fresno”model); (c) the Child at Risk Field System; (d)
the Child Emergency Response Assessment Protocol; and (e) the actuarial risk assessment
instruments developed by the Children's Research Center.
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tools that cover case decision making from hotline call to reunification.
SDM system goals include improved assessments, increased consistency
and accuracy in assessment, and increased efficiency in operations
(NCCD, 2012). Selection of risk factors included in SDM risk scales is
based on analysis of historical data. These actuarial scales and clinical
assessments are combined in a decision matrix that helps determine risk
of recurrence and probability of successful reunification. Thus whereas
actuarial methods are relied on for risk factor selection, the SDM ap-
proach might be better termed clinically adjusted actuarial predictions,
because clinical judgment can be used to adjust final risk scores (CWLA,
2005; Shlonsky &Wagner, 2005). SDM is currently in use in more than
20 states and several countries (NCCD, 2014). Several studies have
confirmed the validity of the SDM risk assessment factors when pre-
dicting recurrence of maltreatment (Johnson &Wagner, 2003; Johnson,
2011; Wood, 1997).

Despite their widespread implementation, actuarial tools still have
multiple operational limitations (D'Andrade et al., 2005;
Gambrill & Shlonsky, 2000; Lyle & Graham, 2000; Wald &Woolverton,
1990). Although they are typically easier to score and interpret, these
assessment tools are still prone to operator error in both application and
interpretation. This lack of tool fidelity can compromise effectiveness.
Additionally, actuarial instruments often contain subjective measures
that require clinical judgment to score, such as determinations of
whether adequate supervision is provided in the home. These items
have been shown to be less reliable than more objective and well-de-
fined variables such as whether previous maltreatment occurred and
may affect predictive validity (D'Andrade et al., 2005;
English & Graham, 2000).

Workers' differential interpretations of case histories can also result
in inconsistent tool scoring. Several studies have demonstrated that
different workers given identical case histories often make different
case screening decisions (Britner &Mossler, 2002; Jergeby & Soydan,
2002; Rossi, Schuerman, & Budde, 1996). Studies have also shown that
tools are often not used as intended by developers and often have little
effect on workers' case-related behavior (Baumann, Law, Sheets,
Reid, & Graham, 2005; Gillingham&Humphreys, 2010). For instance,
caseworkers have been shown to ignore risk scores because they per-
ceive them to overestimate risk and oversimplify the complexity of
child welfare cases (Gillingham&Humphreys, 2010). Finally, operator-
driven actuarial risk assessments are also resource intensive, requiring
both staff time and funds for repeat administration and adequate edu-
cation and training. These operational limitations are magnified in
agency environments characterized by scarce resources, as well as large
caseloads and high staff turnover rates.

Statistical limitations can also affect the effectiveness of actuarial
assessment tools. Specifically, such tools are rarely normed to or vali-
dated with the population to which they are ultimately applied, re-
sulting in static models of risk. Risk, however, is inherently dynamic;
not only can risk levels change throughout the life of a case, but the
profile of a service population can also change over time due to de-
mographic shifts or changes resulting from agency initiatives (Boer,
Hart, Kropp, &Webster, 1997; Sjöstedt & Grann, 2002). Actuarial
models that rely on static historical associations fail to capture such
changes. Additionally, many rely on crude stratification of risk based on
arbitrary thresholds (e.g., low, medium, high) that limit their utility and
decrease accuracy. Workers rarely receive detailed guidance on how
best to prioritize families for attention in each risk category, further
diluting the assessment tool's usefulness in practice. Finally, although
some actuarial approaches use computational techniques for decision
support, in general the field has not kept pace with rapid advances in
technology and statistical modeling that can employ vast amounts of
available data in the prediction of risk (Schwartz, Kaufman, & Schwartz,
2004).

Although a majority of investigations have shown higher predictive
validity and reliability for actuarial models, several analyses have
shown theoretical and empirically guided tools to have higher

predictive validity than pure actuarial tools (English, Marshall,
Brummel, & Coghlan, 1998). Some studies have also shown actuarial
models to have high margins of error (Baumann et al., 2005;
Camasso & Jagannathan, 2000). Critics have argued that when used to
predict individual risk, pure actuarial models often fail to account for
localized contextual or individual protective factors that interact to
mitigate or enhance risk (Crea, 2010). Some argue that pure actuarial
tools do not reflect the complex ecology of child maltreatment (CWLA,
2005; Gillingham&Humphreys, 2010).

Although experts in CPS risk assessment now generally agree that
actuarial tools are more effective in predicting risk of child maltreat-
ment than clinical judgment alone, these tools cannot and should not
replace sound clinical judgment during the assessment process
(Grove &Meehl, 1996; Knoke & Trocmé, 2005; Shlonsky &Wagner,
2005). Overreliance on resource intensive actuarial assessments can
result in agency cultures dominated by procedural compliance that
stifles the development of professional expertise (Munro, 2010, 2011a,
2011b). Even when actuarial tools are used appropriately for decision
support, their usefulness is contingent upon the quality of the in-
formation available. In short, the success of these tools is dependent on
a frontline CPS worker who is adequately trained and motivated to
properly use the tool (anecdotally a notable barrier in CPS organiza-
tions) and who has the time to administer it in a fashion such that new
data are incorporated into the risk or safety assessment (D'Andrade
et al., 2005; Russell, 2015; Vaithianathan et al., 2012). Technological
and computational advances have made it possible to overcome many
of the shortcomings in the current child maltreatment risk assessment
paradigm (Schwartz et al., 2004). One of the most compelling of these is
PRM.

3. Predictive risk modeling

Many of the operational and statistical limitations of traditional
actuarial risk assessment tools can be addressed with the application of
predictive analytics. Predictive analytics refers to the application of
data mining, modeling, and analytic techniques to existing data to
discover patterns and make predictions (Guazzelli, 2012). PRM, a type
of predictive analytics, is a statistical method of identifying character-
istics that risk-stratify individuals in a population based on the like-
lihood each individual will experience a specific outcome or event. The
result of the model's mathematical algorithm is a risk score. Unlike
model-building techniques traditionally used in risk assessment—in
which variables are chosen on the basis of previously researched re-
lationships with the specified outcome—in PRM, as many data points as
possible are examined, even if there is no previously specified re-
lationship with the outcome of interest.

This technique has several advantages relative to other actuarial
methods of risk assessment. First, because PRM uses vast amount of
data, it can identify previously unobserved relationships between
variables (Marshall & English, 2000). Second, PRM models are learning
models that can continually adjust to new relationships present in the
data. This flexibility allows the models to account for variants in dif-
ferent subpopulations and capture dynamic changes in risk over time.
Third, PRM models use existing data on the population for which the
tool is being used, whereas more common actuarial instruments are
rarely validated with the population of interest (Russell, 2015). Fourth,
PRM as an approach is inherently more consistent than other risk as-
sessment procedures. Variable selection, although limited by available
data, is mathematical and there is no arbitrary selection of predictors.
Fifth, unlike typical operator-driven assessments—in which effective
implementation is dependent on worker training and com-
pliance—PRM models operate independent of such factors
(Vaithianathan et al., 2012).

PRM is used in many industries for decision support and targeting of
interventions, including insurance, credit, marketing, and health care
(Liao, Chu, & Hsiao, 2012; Tsai, 2012). Insurance uses include claims
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management, fraudulent claims detection, reserve setting, under-
writing, and retail marketing campaigns (Nyce, 2007). The technique is
also routinely used by the U.S. government to detect fraud. For in-
stance, the Center for Program Integrity, a division of the Centers for
Medicare &Medicaid Services, uses real-time predictive analytics to
detect both beneficiary and provider claim fraud. Algorithms produce
risk scores and high-risk claims are flagged for review by trained claims
analysts (U.S. Department of Health and Human Services, 2011). Pre-
dictive analytics has also been deployed successfully for many years for
fraud detection in the credit card industry (Ngai, Hu, Wong,
Chen, & Sun, 2011). In the e-commerce sector, marketers and busi-
nesses use data-mining techniques to predict buying patterns and help
target personalized advertising (Berry & Linoff, 2004).

Predictive models were initially implemented in health care settings
decades ago as a strategy for managing costs—specifically to deal with
the small proportion of patients that accounts for a large share of the
costs (Axelrod & Vogel, 2003; Cousins, Shickle, & Bander, 2004;
Panattoni, Vaithianathan, Ashton, & Lewis, 2011). Subsequently, PRM
has been used successfully to predict risk of heart failure, lung cancer,
breast cancer, post-surgery mortality, and emergency department use
(Brennan, Dieterich, & Ehret, 2009; Euhus, 2004; Fogel, Wasson,
Boughton, & Porto, 1998; Kanazawa, Kubo, & Niki, 1996; Lewis et al.,
2013; Moore, Gerdtz, Hepworth, &Manias, 2011; Moore et al., 2012;
Orr, 1997). Automated models are also used routinely in health care to
provide decision support.

The application of predictive analytics in health care has evolved to
where it is now being used to personalize medical interventions for
individual patients (Brooks, 2013). For instance, in 2010, the U.S. De-
partment of Health and Human Services implemented a framework to
employ PRM to appropriately identify and stratify high-risk patient
populations, particularly patients with multiple chronic conditions for
more focused care intervention (Weir & Jones, 2009). In addition to
health care, predictive analytics has been used to improve assessment in
the social services arena. For example, researchers have used PRM to
predict homelessness recidivism and to more efficiently target services
(Shinn, Greer, Bainbridge, Kwon, & Zuiderveen, 2013; Shinn et al.,
1998).

4. PRM in child protection

Despite its proven utility in many fields, PRM has only recently been
applied to the classification of risk in CPS. Several national and regional
efforts are underway to examine its efficacy in this area. Although these
initiatives differ in scale and purpose, most are using predictive ana-
lytics to help identify families and children at risk and triage them for
preventive services. Packard (2016) reviewed the implementation of
PRM in CPS to date and found that it has been used to predict risk of
maltreatment, recurrence, child death, failed reunifications, and youth
resilience, among others. For our purposes, several recent projects fo-
cused on predicting child maltreatment risk and recurrence are worth
highlighting.

Early work by Marshall and English (2000) and Zandi (2000) used
artificial neural networks to predict child abuse risk. Marshall and
English (2000) used administrative data from Washington state's CPS
risk assessment data to successfully model workers' risk assessments
using 37 risk factors. The neural networks were found to be more ef-
fective than other multivariate techniques (Marshall & English, 2000).
Using data from the Third National Incidence Study of Child Abuse and
Neglect, Zandi (2000) and Schwartz et al. (2004) experimented with
using artificial neural networks to train a model to predict children's
likelihood of meeting the study's harm standard. In both cases, the
predictive risk models reliably predicted risk of abuse (Schwartz et al.,
2004; Zandi, 2000).

Vaithianathan et al. (2012) used prospective population-based PRM
to examine child maltreatment risk in a general population in New
Zealand. The project used linked records from public work and income,

child and family health, and welfare systems to predict maltreatment
(substantiated finding of neglect or emotional, physical, or sexual
abuse) by age 5 among children in New Zealand. The model, which
used 132 predictors, accurately predicted maltreatment risk with an
area under the receiver operating curve of 76%, a rate similar to that
found in digital mammography (Vaithianathan et al., 2012).

The Florida Department of Children and Families and its technology
vendor, Eckherd, used CPS data for a 5.5-year trend analysis of child
fatalities. The analysis applied predictive analytics techniques to CPS
hotline data identify the characteristics of children with higher odds of
premature death (Florida Department of Children and Families, 2014).
The analysis identified 14 risk factors associated with increased risk of
child death, including age (children aged 0–2 were most at risk), prior
removal for physical or sexual abuse, removal for parental substance
abuse, and presence of a physical or intellectual disability. Receipt of
in-home services was shown to have a protective effect.

The results of such studies have also been operationalized in CPS
practice. For instance, in Florida's Hillsborough County, the Department
of Children and Families has developed the Eckerd Rapid Safety
Feedback tool (Eckerd, 2016; Florida Department of Children and
Families, 2014). A qualitative review was used to identify risk factors
associated with risk of child fatality. Using these factors, a real-time
overlay for the county's automated child welfare information system
was developed so that workers could monitor these specific factors
using a dashboard and intervene to ensure child safety when warranted.
In addition to focusing on child fatality, predictive analytic applications
have been developed for other child welfare outcomes including re-
abuse, long stays in foster care, aging out, and reentry following re-
unification, among others (Mindshare Technology, 2016). The Eckerd
model is currently being investigated for use in other jurisdictions, in-
cluding Connecticut, Alaska, Oklahoma, Nevada, and Maine (Heimpel,
2014).

Most recently, Allegheny County, Pennsylvania, has implemented a
PRM tool in its CPS hotline known as the Allegheny Family Screening
Tool. The tool uses data from 27 departments housed in the county's
data warehouse. The PRM model produces a risk score, enabling hotline
workers to determine if referrals should be screened in for investigation
(Vaithianathan, Jiang, Maloney, & Putnam-Hornstein, 2016a, 2016b).
Risk scores (ranging from 1 to 20) are assigned to the entire household,
not just the child victim, indicating the likelihood of a placement or re-
referral in the 365 days following the hotline call. Further work is
currently underway to explore models that might be deployed further
upstream, helping to prioritize families for various early intervention
and family support programs. A key feature of PRM models is that they
can be thought of as learning models, and when implemented in live
data systems, risk scores are continually adjusted to take into account
prior history and models are regularly re-weighted and re-validated.

5. Challenges of PRM

Earlier described projects illustrate the potential benefits of the
implementation of PRM to risk assessment in CPS. By leveraging tech-
nology and existing administrative data, they are enabling agencies to
overcome many of the shortcomings in the current risk assessment
paradigm. Despite the exciting promise of PRM as a risk classification
tool, there are many challenges to successful and proper implementa-
tion. These challenges can be operational, legal, and ethical.

5.1. Operational challenges

Despite the improved prediction capacity gained from the applica-
tion of PRM, no model is 100% accurate. Determining a PRM model's
risk threshold involves balancing the model's specificity and sensitivity
(type I and type II errors), because the two are inversely related. Setting
a high risk threshold increases a model's sensitivity, but also increases
the proportion of false negative risk classifications (type II error).
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Conversely, setting a low risk threshold will increase a model's speci-
ficity, but also increase the proportion of false positive risk classifica-
tions (type I error). As Baumann et al. (2005) notes, when child safety is
concerned, model sensitivity may be prioritized and resulting higher
false positive rates are tolerated.

These statistical decisions can have concrete consequences for
children's lives. Specifically, children and families misidentified as low
risk may not receive necessary preventive services and go on to ex-
perience abuse and neglect, whereas those misidentified as high risk
may be subjected to unnecessary involvement with social services (de
Haan & Connolly, 2014; Gambrill & Shlonsky, 2000). Misclassification
errors, however, are not limited to PRM techniques; they are also
possible with clinical judgment and other risk assessment strategies.
The advantage of PRM compared with other strategies is transparency.
As Dare and Gambrill (2016) argued, “the greater accuracy and trans-
parency of predictive risk modeling tools also allows them to serve as
(inevitably imperfect) checks against well-understood flaws in alter-
native approaches to risk assessment” (p. 4). The expertise of both
clinicians who understand the practice implications of false positives
and false negatives, as well as statisticians who can quantify trade-offs,
is required to set initial risk thresholds. The ongoing involvement of
both clinicians and statisticians is also required to analyze the perfor-
mance of PRM models and appropriately re-weight covariate predictors
and adjust thresholds to reflect changes in the client population and the
local decision making context.

An additional operational concern for PRM relates to the selection
of the outcome to be predicted. These models can be highly effective in
predicting events that occur with sufficient frequency. Research how-
ever, has suggested that predictive models do not perform well when
predicting less frequent rare events. It is critically important that
agencies recognize these statistical limitations. With the best of inten-
tions, some agencies are seeking to employ PRM to help prevent the
worst and rarest of child protection outcomes: child fatalities (Florida
Department of Children and Families, 2013). CPS leaders should be
cautious because the analysis of rare events requires very special at-
tention and current data-mining techniques are often insufficient for
efficiently handling these extremely rare events (Lazarević,
Srivastava, & Kumar, 2004).

Data availability and quality are also important operational con-
cerns for PRM (Russell, 2015). The statistical power of PRM models
improves with large amount of data. In addition to ensuring that ade-
quate data are available, the quality of these data must be considered
(Connelly, Playford, Gayle, & Dibben, 2016). Large amounts of missing
data, poorly specified data fields, or data errors can affect model per-
formance. In agencies, efforts must be made to demystify the PRM black
box and the data fields it requires to promote buy-in and ownership by
frontline data-entry staff members (Gillingham, 2016). Such efforts will
ultimately improve data quality and model performance.

In addition to child abuse and neglect information systems, addi-
tional service data of interest includes: public assistance (i.e. TANF,
WIC), education, health, mental health, developmental services, em-
ployment, housing, and criminal justice. These sources likely include
useful predictors that might aid in the assessment of child safety. The
range of data available for PRM, however, depends on location, and
there is wide variability in the types and quality of data available across
jurisdictions. In some locations, child welfare and other service system
data can be found in integrated data bases. While in others, data re-
mains siloed and utilization requires multiple data use agreements and
time consuming data linkages.

5.2. Legal and ethical challenges

A variety of legal and ethical questions arise when PRM techniques
are used to identify the recurrence risk of abuse and neglect. Dare and
Gambrill (2016) pointed out that the ethical costs and benefits of PRM
need to be compared with the next best available alternative, rather

than some theoretical ideal. Because of the unfamiliar nature of PRM
tools, they tend to be subjected to greater level of criticisms, many of
which could equally be leveled at other operator-driven tools. The areas
of concern include privacy and consent, potential discrimination, and
proprietary ownership. When implementing PRM, privacy concerns
regarding the use of public data to identify those at risk must be con-
sidered. For instance, does the concept of due process apply to families
and their risk scores? How is consent to information granted?
(Christian, 2015; Dare, 2013, 2015; Dare & Gambrill, 2016). These
needs for privacy and due process must be balanced with the agencies'
duty to ensure the safety of children. In their review of the Allegheny
County project, Dare and Gambrill (2016) acknowledged that privacy
and consent must be given consideration when PRM techniques are
applied. However, they argued that PRM and other modeling techni-
ques simply represent a more efficient way of using existing agency
data for risk assessment. “The model does not create new rights of ac-
cess to that information—that a diligent child protection official would
already have been entitled to gather the information now to be accessed
by the tool” (Dare & Gambrill, 2016, p. 3).

An important ethical concern is whether PRM techniques will ex-
acerbate already prevalent racial disparities in CPS. Specifically, if
agency data reflect persistent racial bias, then misclassification errors
and their consequences might result. Although this possibility is in-
herent in PRM, proponents have noted that models provide an oppor-
tunity to openly and systematically track disparities and correct for
them, which is difficult to do with alternative approaches
(Dare & Gambrill, 2016).

A final ethical concern relates to the logistics of PRM itself. In an
effort to improve practice, many jurisdictions have embarked on PRM
initiatives. Although CPS data are based in public agencies, because of
the statistical expertise required, model development is often con-
tracted to private, for-profit vendors. Although PRM models are
mathematically transparent, when private vendors are involved, in-
tellectual property laws often apply, and therefore the “details of model
development, performance metrics, and statistical methodologies”
(Russell, 2015, p. 188) required to validate accuracy and utility may not
be available. Child welfare leaders have the responsibility to continue
be critical consumers of information and ensure that the validity and
reliability of models are examined on an ongoing basis (Russell, 2015).
In addition to these measures, agencies can promote intra and inter
agency transparency through the formation of advisory panels, the es-
tablishment of clear implementation guidelines, the public release of
model input and performance details, and the solicitation of external
reviews.

Ultimately, the effective use of PRM techniques demands agencies
have well-developed protocols for intervention when risk is de-
termined. To be effective, any risk assessment system must be efficient
and simple to administer, the agency culture must fully support im-
plementation, leaders should understand the basics of the model, and
workers and supervisors must buy in to the new classification system.
Such systems, however, are not an end game; rather as O'Brien (2015)
stated, “jurisdictions must be prepared to take action, otherwise they
are engaging in a strictly academic exercise” (p. 6). Even if prediction
algorithms can identify at-risk clients, intervening to change the out-
come may be limited. Improving outcomes ultimately depends on the
willingness of families identified through PRM to accept services and
the quality of the services delivered.

6. Conclusion

Predictive analytics offer much promise to the field of child pro-
tection as a classification and risk stratification tool. Although there are
important operational, legal, and ethical considerations in the appli-
cation of PRM for this purpose, there also exists both a fiscal and ethical
imperative to leverage scarce resources to assist those families most in
need. Available evidence demonstrates that predictive risk models,
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when employed in combination with careful clinical practice (Crea,
2010; Shlonsky &Wagner, 2005), can satisfy this imperative re-
sponsibly, ethnically, and effectively. Still, much is unknown and great
caution must be exercised and thought given to implementation
(Zullinger, 2015).
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