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This article describes methods for matching duplicates within or across files using
non-unique identifiers such as first name, last name, date of birth, address, and
other characteristics. © 2010 John Wiley & Sons, Inc. WIREs Comyp Stat

Record linkage, in the present context, is simply
the bringing together of information from two
records that are believed to relate to the same
entity—for example, the same individual, the same
family, or the same business. This might involve the
linking of records within a single database to identify
duplicate case records. Alternatively, record linkage
might involve the linking of records across two or
more databases. Such work might be undertaken to
merge these databases into a single database with
improved coverage or scope. The record linkage work
is easiest when unique identification numbers (such
as Social Security Numbers) are readily available. The
work is more challenging when only quasi-identifiers
such as given name, surname, date of birth, and
address are available. In combination, quasi-identifiers
may uniquely identify an individual.

APPLICATIONS OF RECORD LINKAGE

Record linkage is widely used by both businesses
and government agencies. Businesses might use
record linkage techniques to remove duplicate entries
from mailing lists, thereby reducing both printing
and mailing costs, and otherwise operating more
efficiently. Businesses might also use record linkage
to improve the functionality of their databases.
For example, in the corporate combination between
Bank of America and Countrywide Mortgage, it was
widely conjectured that a major factor driving the
deal was Bank of America’s desire to obtain e-mail
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addresses of its retail customers from Countrywide
Mortgage’s database.

Government agencies are frequently concerned
with large-scale sample surveys and censuses. In such
work, it is critical to the success of the project that
the list frame of each survey has few, if any, duplicate
records and that the list frame be complete in the sense
that all the entities of interest be present on the list
frame. Frame errors can severely bias sampling and
estimation. It is nearly impossible to correct errors
in estimates that are based on a sample drawn
from a frame with moderate error.! In addition to
(1) increasing coverage and (2) reducing the number
of duplicate records on a list, computerized record
linkage models can (3) reduce the number of clerical
hours required for review and cleanup and (4) reduce
the overall cost of a survey or census.

For its 1987 Census of Agriculture, the Bureau
of the Census implemented ad hoc algorithms for
parsing names and addresses. For pairs of records
agreeing on U.S. Postal Zip Code, the software used
a combination of (1) surname information, (2) the
first character of the given name, and (3) numeric
address information to identify ‘duplicates’ and
‘possible duplicates’. Of these pairs of records,
(1) 6.6% (396,000) were identified as ‘duplicates’ and
(2) an additional 28.9% (1,734,000) were designated
as ‘possible duplicates’. The ‘possible duplicates’
were then reviewed manually. This clerical effort,
encompassing about 14,000 h of clerical time over
a 3-month period of time, identified an additional
450,000 duplicate records. The Bureau of the Census
estimated that about 10% of the records on the final
list frame were duplicates. Because there were so
many duplicates, some of the estimates calculated
from this survey may be substantially in error.

For its 1992 Census of Agriculture, the Bureau
of the Census implemented a computerized record
linkage model based on the Fellegi-Sunter model and
augmented by effective algorithms (see Section An
Empirical Example) for dealing with typographical
errors. The resulting software identified 12.8% of
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the 6-million record file (about 768,000 records)
as duplicates and an additional 19.7% as requiring
clerical review. This time the number of clerical
staff hours was reduced by about half, to 6500 over
22 days, and an additional 486,000 duplicates were
identified. Moreover, this time the Bureau of the
Census estimated that only about 2% of the records
on the final list frame were duplicates.

Another use of record linkage models is to
estimate the extent of undercoverage/overcoverage in
the U.S. Decennial Census. For both the 1980 and
1990 U.S. Censuses,” a large number of census blocks
(contiguous regions of approximately 70 households)
were re-enumerated. The computerized record linkage
model used for the 1990 Census

e reduced the amount of required clerical review
and cleanup from an estimated 3000 individuals
for 6 months on the 1980 Census to 300
individuals for 6 weeks on the 1990 Census,

e reduced the false match rates from 5.0% on the
1980 Census to approximately 0.2% on the 1990
Census, and

e increased the proportion of matches automati-
cally identified by the computer from 0% on the
1980 Census to more than 85% on the 1990 Cen-
sus. (Moreover, for the 1990 Census, the remain-
der of the matches were easily located among
potentially matching individuals in the same
household. The potentially matching individuals
were often missing both first name and age.)

SCOPE OF WORK

In this article, we focus on the record linkage model
of Fellegi and Sunter? and several of the enhanced
practical tools that are needed to handle (often
exceptionally) messy data.? Although the essence of
the approach is statistical, most development has
been done by computer scientists using machine
learning or database methods.* Computer scientists
refer to record linkage as entity resolution, object
identification, or a number of other terms.

Our work proceeds as follows. In Section The
Fellegi—Sunter Model of Record Linkage, we describe
the record linkage model of Fellegi and Sunter.? In
Sections Learning Parameters via the Methods of
Fellegi and Sunter and Learning Parameters via the
EM Algorithm, we present two schemes for estimating
the parameters of the Fellegi-Sunter model. The
scheme described in Section Learning Parameters via
the Methods of Fellegi and Sunter requires training
data; the more general estimation scheme of Section
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Learning Parameters via the EM Algorithm uses the
EM algorithm and does not require the training data.
In Section String Comparators, we describe string
comparator metrics. These are tools that enhance the
use of the Fellegi—Sunter model when names of indi-
viduals and/or addresses are subject to typographical
error. In Section An Empirical Example, we present
an empirical example. Finally, Section Summary and
Concluding Remarks consists of concluding remarks.

THE FELLEGI-SUNTER MODEL
OF RECORD LINKAGE

Fellegi and Sunter® provided a formal mathematical
model for ideas that had been introduced by New-
combe et al.> and Newcombe and Kennedy.® They
introduced many ways of estimating key parameters
without training data. The methods have been
rediscovered in the computer science literature,” but
without proofs of optimality. To begin, notation is
needed. Two files A and B are matched. The idea is to
classify pairs in a product space A x B from two files
A and B into M, the set of true matches, and U, the
set of true nonmatches. Fellegi and Sunter, building
rigorous concepts introduced by Newcombe et al.,
considered ratios of probabilities of the form:

R =P(y e I''M)/P(y € I'|U), (1)

where y is an arbitrary agreement pattern in a com-
parison space I". For instance, I' might consist of eight
patterns representing simple agreement on the largest
name component, street name, and street number.
Alternatively, each y € I' might additionally account
for the relative frequency with which specific values
of name components such as ‘Smith’, ‘Zabrinsky’,
‘AAA’, and ‘Capitol’ occur. The ratio R or any mono-
tonically increasing function of it, such as the natural
log, is referred to as a matching weight (or score).
The decision rule is given by:

If R > T}, then designate pair as a match.
If T) < R < T, then designate pair as a possible
match and hold for clerical review.

If R < T;, then designate pair as a nonmatch. (2)

The cutoff thresholds T, and T} are determined
by a priori error bounds on false matches and false
nonmatches. Rule 2 agrees with the intuition. If y € T
consists primarily of agreements, then it is intuitive
that y € ' would be more likely to occur among
matches than nonmatches and ratio 1 would be large.
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On the other hand, if ¥ € " consists primarily of dis-
agreements, then ratio 1 would be small. Rule 2 parti-
tions the set y € I into three disjoint subregions. The
region T, < R < T, is referred to as the no-decision
region or clerical review region. In some situations,
resources are available to review pairs clerically.

Fellegi and Sunter’ (Theorem 1) proved the
optimality of the classification rule given by 2. Their
proof is very general in the sense that it holds for
any representations y € I over the set of pairs in the
product space A x B from two files. As they observed,
the quality of the results from classification rule 2
was dependent on the accuracy of the estimates of
P(y € T|M) and P(y € T'|U).

Figure 1 provides an illustration of the curves
of log frequency versus log weight for matches
and nonmatches, respectively. The two vertical lines
represent the lower and upper cutoffs thresholds T;,
and T, respectively. The x-axis is the log of the
likelihood ratio R given by 1. The y-axis is the log
of the frequency counts of the pairs associated with
the given likelihood ratio. The plot uses pairs of
records from a contiguous geographic region that was
matched in the 1990 Decennial Census. The clerical
review region between the two cutoffs primarily
consists of pairs within the same household, which
are missing both first name and age.

11 1

10 1

Log frequency

o=nonmatch, *=match
cutoff "L" = 0 and cutoff "U" =6

FIGURE 1 Log frequency versus weight matches and nonmatches
combined.

Record linkage

LEARNING PARAMETERS VIA THE
METHODS OF FELLEGI AND SUNTER

Fellegi and Sunter? were the first to give very general
methods for computing the probabilities in ratio 1.
As the methods are useful, we describe what they
introduced and then show how the ideas led to more
general methods that can be used for unsupervised
learning (i.e., without training data) in a large number
of situations.

Fellegi and Sunter observed several things. First,

P(A) = P(AIM)P(M) + P(A|U)P(U), (3)

for any set S of pairs in A x B. The probability on
the left can be computed directly from the set of pairs.
If sets A* represent simple agreement/disagreement,
under the conditional independence assumption (CI),
we obtain

P(A} N A3 N A%|D) = P(AT|D)P(A5|D)P(A3ID), (4)

and then (3)and (4) provide seven equations and
seven unknowns (as x represents agree or disagree)
that yield quadratic equations they solved. Here D
is either M or U. Equation (or set of equations) 4
can be expanded to K fields. Although there are eight
patterns associated with the equations of the form 4,
we eliminate one because the probabilities must add
to one. In general, with more fields but still simple
agreement/disagreement between fields, the equations
can be solved via the EM algorithm in the next section.
Probabilities of the form P(A; | D) are referred to as m-
probabilities if D = M and u-probabilities if D = U.

LEARNING PARAMETERS VIA THE EM
ALGORITHM

In this section, we do not go into much detail about
the basic EM algorithm® because the algorithm is
well understood. We provide a moderate amount of
detail for the record linkage application so that we
can describe a number of the limitations of the EM
and some of the extensions.

For each y € T', we consider

P(y) = P(y|C1)P(C1) + P(y|C2)P(Ca), (5a)
P(y) = P(y|C1)P(C1) + P(y|C2)P(Cy)

+ P(y|G3)P(Gs), (5b)

and note that the proportion of pairs having repre-
sentation y € I (i.e., left-hand side of Eq. 5a) can be

computed directly from available data. In each of the
variants, C; and C, or Cq, Cy, and Cj partition A x B.
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If the number of fields associated with y is K > 3,
then we can solve the combination of equations given
by 5a and 3 using the EM algorithm. Although there
are alternate methods of solving the equation, such
as methods of moments and least squares, the EM
is greatly preferred because of its numeric stability.
Under conditional independence, programming is
simplified and computation is greatly reduced (from
2K to 2k).

Caution must be observed when applying the
EM algorithm to real data. The EM algorithm that
has been applied to record linkage is a latent class
algorithm that is intended to divide A x B into the
desired sets of pairs M and U. The probability of a class
indicator that determines whether a pair in M or U is
the missing data must be estimated along with the -
and u-probabilities. It may be necessary to apply the
EM algorithm to a particular subset S of pairsin A x B
in which most of the matches M are concentrated, for
which the fields used for matching can clearly separate
M from U, and for which suitable initial probabilities
can be chosen. Because the EM is a local maximization
algorithm, the starting probabilities may need to be
chosen with care based on experience with similar
types of files. Because the EM latent class algorithm
is a general clustering algorithm, there is no assurance
that the algorithm will divide A x B into two classes Cy
and C, that almost precisely correspond to M and U.

The following example characterizes some of
the cautions that must be observed when applying
the EM. As we will observe, the EM, when properly
applied, can supply final limiting parameters that are
quite effective. Based on extensive Decennial Census
work, the final limiting parameters often reduced
the size of the clerical review region by two-thirds
from the region that might have been obtained by
the initial parameters obtained from knowledgeable
guesses. In the following, we use 1988 Dress Rehearsal
Census data from one of the 457 regions of the United
States that we used for the 1990 Decennial Census.
The matching fields consist of last name, first name,
house number, street name, phone, age, and sex. In
actuality, we also used middle initial, unit (apartment
identifier), and marital status. The first file A is a
sample of blocks from the region and the second file
is an independent enumeration of the same sample
of blocks. The first file size is 15,048 and the second
file size is 12,072. We only consider 116,305 pairs
that agree on Census block ID and first character of
surname. A census block consists of approximately
70 households, whereas a ZIP + 4 area represents
approximately 50 households. We observe that there
can be at most 12,072 matches if the smaller file
is an exact subset of the larger file. As is typical in

www.wiley.com/wires/compstats

population censuses, the work begins with address
lists of households in which the data from the survey
forms are used to fill in information associated with
individuals. In many situations (such as with families),
there will be more than one individual associated with
each address (housing unit).

We begin by applying the (2-class) EM to
the set of 116,305 pairs. We use knowledgeable
initial probabilities that we believe correspond to the
probabilities we need for matching individuals. We
also use a precursor program to get the counts (or
probabilities) of the form P(y) that we use in the EM
algorithm. In the limit, we get the final probabilities
given in Table 1. The final proportion of matches
in the first class P(M) = 0.2731 is much too large.
The m-probability P(agree first | M) = 0.31 is much
too small. What has gone wrong? We observe that
addresses are of high quality. Because we are in very
small contiguous regions (blocks), last name, house
number, street name, and phone are likely to be the
same in most housing units associated with families.
The higher quality household information outweighs
the person fields of first name, age, and sex that might
be used to separate individuals within household.

We overcome the situation by creating a 3-class
EM that we hope divides records agreeing on
household variables into two classes and leaves a
third class that would be nonmatches outside the
households. The initial ideas were due to Smith and
Newcombe® who provided separate ad hoc weighting
(likelihood) adjustments for the set of person fields
and the set of household fields. As the EM algorithm
is quite straightforward to convert to three classes,
we make the appropriate algorithmic adjustments and
choose appropriate starting probabilities. Winkler!”
provides details. Table 2 gives initial probabilities
for a first class that we hope corresponds to person
matches M within a household, an in-between class
I, that we hope corresponds to nonmatches within
the same household, and a class Oj, that are pairs

TABLE 1| Initial and Final Probabilities from 2-Class EM Fitting

Initial Final
m u m u
Last 0.98 0.24 0.95 0.07
First 0.98 0.04 0.31 0.01
Hsnm 0.94 0.24 0.98 0.03
Stnm 0.66 0.33 0.99 0.47
Phone 0.70 0.14 0.68 0.01
Age 0.88 0.11 0.38 0.07
Sex 0.98 0.47 0.61 0.49
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TABLE 2 | Initial and Final Probabilities from 3-Class EM Fitting

Initial Final

m i oh m i oh u
Last 098 090 024 09% 092 007 025
First 098 024 0.04 09 0.02 0.01 0.0
Hsnm 094 090 024 097 097 004 023
Stnm 066 090 033 098 099 047 058
Phone 070 060 014 072 064 001 0.14
Age 0.88 020 0.11 088 0.14 0.07 0.08
Sex 098 070 047 098 045 049 049

not agreeing on household fields. To get the final
u-probabilities, we combine the i-probabilities and
the oh-probabilities according to the proportions in
classes 2 and 3. When we run the EM program,
we get probabilities of being in the three classes
of 0.0846, 0.1958, and 0.7196, respectively. The
probability 0.0846 associated with the first class
accurately corresponds to the known number of true
matches (obtained via two levels of review and one
level of adjudication). The starting i-probabilities are
reasonable guesses for the probabilities of persons
within the same household who are not matches.

If the EM algorithm is applied with care, then
it will generally yield good parameter estimates with
lists of individuals. It will not always yield reasonable
parameters with agriculture or business lists because
of the (moderately) high proportion of truly matching
pairs that disagree on names or addresses. The EM
algorithm was used for production matching in
the 1990 Decennial Census>* because Winkler had
been able to demonstrate that matching probabilities
(particularly m-probabilities) varied significantly (say
between a suburban area and an adjacent urban area).
If we think of 1 — P(A; | M) as crudely representing
the average typographical error in the ith field, then
the variation of parameters is understandable because
lists associated with urban areas often contain more
typographical error.

Winkler!®!! showed that the EM algorithm
yielded ‘optimal parameters’ in the sense of effective
local maxima of the likelihood. The 2-class and 3-class
EM algorithms under condition (CI) are quite robust.
If starting points are varied substantially, the EM
converges to the same limiting values where the
limiting values are determined by characteristics of the
files A and B. The 2-class algorithm will outperform
the 3-class algorithm in situations where there is
typically only one entity at an address (or telephone
number). In those situations, the address can be
considered as an identifier of the individual entity.

Record linkage

During 1990 production matching, the EM
algorithm showed its flexibility. In three regions
among a number of regions processed in 1 week,
clerical review became much larger with the EM
parameters than was expected. Upon quick review,
supervisors determined that two keypunchers had
managed to bypass edits on the year of birth. All
records from these keypunchers disagreed on the
computed age. The clerical review became much
larger because first name and the age were the main
fields for separating persons within a household.

Ravikumar and Cohen!? and Bhattacharya and
Getoor!® provide unsupervised methods of learning
parameters that generalize the EM methods of
Winkler!! and are related to the general methods of
Winkler.!0

STRING COMPARATORS

In most matching situations, we will get poor match-
ing performance when we compare two strings
exactly (character-by-character) because of typo-
graphical error. Dealing with typographical error via
approximate string comparison has been a major
research project in computer science (see, e.g., Refs
14 and 15). In record linkage, we need to have
a function that represents approximate agreement,
with agreement being represented by 1 and degrees
of partial agreement being represented by numbers
between 0 and 1. We also need to adjust the like-
lihood ratios 1 according to the partial agreement
values. Having such methods is crucial to matching.
For instance, in a major census application for mea-
suring undercount, more than 25% of matches would
not have been found via exact character-by-character
matching. Three geographic regions (St Louis—ur-
ban, Columbia, MO—suburban, and Washington—
suburban/rural) are considered in Table 3. The func-
tion @ represents exact agreement when it takes
value 1 and represents partial agreement when it takes
values <1. In the St Louis region, for instance, 25%

TABLE 3| Proportional Agreement by String Comparator
Values Among Matches

St Louis Columbia Washington
First
®=1.0 0.75 0.82 0.75
P >06 0.93 0.94 0.93
Last
®=1.0 0.85 0.88 0.86
P >06 0.95 0.96 0.96

Key fields by geography.
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of first names and 15% of last names did not agree
character-by-character among pairs that are matches.

Jaro'® introduced a string comparator that
accounts for insertions, deletions, and transpositions.
The basic Jaro algorithm has three components:
(1) compute the string lengths, (2) find the number of
common characters in the two strings, and (3) find the
number of transpositions. The definition of common
is that the agreeing character must be within half
the length of the shorter string. The definition of
transposition is that the character from one string
is out of order with the corresponding common
character from the other string. The string comparator
value (rescaled for consistency with the practice in
computer science) is:

1/ N N,
Di(s1,82) = ( < <

3 leny,

0.5N;
6
lens, + Nc )’ (6)

where s1 and sy are the strings with lengths leng;
and leny,, respectively, N¢ is the number of common
characters between strings s and s where the distance
for common is half of the minimum length of s and s»,
and N is the number of transpositions. The number of
transpositions N; is computed somewhat differently
from the obvious manner.

Using truth data sets, Winkler'” introduced
methods for modeling how the different values of
the string comparator affect the likelihood 1 in the
Fellegi-Sunter decision rule. Winkler!” also showed
how a variant of the Jaro string comparator ® dra-
matically improves matching efficacy in comparison
with situations when string comparators are not
used. The Winkler variant uses some ideas of Pollock
and Zamora!® in a large study for the Chemical
Abstracts Service. They provided empirical evidence
that quantified how the probability of keypunch
errors increased as the character position in a string
moved from the left to the right. The Winkler variant,
referred to as the Jaro—Winkler string comparator, is
widely used in computer science.

Work by Cohen et al.!®?° provides empirical
evidence that the new string comparators can perform
favorably in comparison with bigrams and edit
distance. Edit distance uses dynamic programming
to determine the minimum number of insertions,
deletions, and substitutions to get from one string
to another. The bigram metric counts the number
of consecutive pairs of characters that agree between
two strings. A generalization of bigrams is g-grams,
where g can be greater than 2. Cohen et al.!%20
provided additional string comparators that they
demonstrated slightly outperformed the Jaro—-Winkler
string comparator with several small test decks, but
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not with a test deck similar to Census data. Yancey,?!
in a rather exhaustive study, also demonstrated that
Jaro—Winkler string comparator outperformed new
string comparators of Cohen et al.'®?% with large
census test decks. Yancey introduced several hybrid
string comparators that used both the Jaro-Winkler
string comparator and variants of edit distance.
Table 4 compares the Jaro, Winkler, bigram,
and edit distance values for selected first names and
last names. Bigram and edit distance are normalized
to be between 0 and 1. All string comparators take
value 1 when the strings agree character-by-character.

AN EMPIRICAL EXAMPLE

In the following, we compare different matching
procedures on the data that were used for the
initial EM analyses (Tables 1 and 2). Although we
also demonstrated very similar results with several
alternative pairs of files, we do not present the
additional results here.!” The results are based only
on pairs that agree on block identification code and
first character of the last name.

The procedures that we use are as follows. The
simplest procedure, crude, merely uses an ad hoc (but
knowledgeable) guess for matching parameters and
does not use string comparators. The next, param,
does not use string comparators but does estimate
the m- and w-probabilities. Such probabilities are
estimated through an iterative procedure that involves
manual review of matching results and successive
reuse of re-estimated parameters. Such iterative
refinement procedures are a feature of Statistics
Canada’s CANLINK system.

The third type, param2, uses the same probabil-
ities as param and the basic Jaro string comparator.
The fourth type, em, uses the EM algorithm for
estimating parameters and the Jaro string compara-
tor. The fifth type, em2, uses the EM algorithm
for estimating parameters and the Winkler variant
of the string comparator that performs an upward
adjustment based on the amount of agreement in the
first four characters in the string.

In Table 5, the cutoff between designated
matches is determined by a 0.002 false match rate.
The crude and param types are allowed to rise slightly
above the 0.002 level because they generally have
higher error levels. In each pair of columns (designated
matches and designated clerical pairs), we break out
the counts into true matches and true nonmatches.
In the designated matches, true nonmatches are false
matches.

By examining the table, we observe that a
dramatic improvement in matches can occur when
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TABLE 4 | Comparison of String Comparators Using Last Names and First Names

String Comparator Values

Two Strings Jaro Winkler Bigram Edit
SHACKLEFORD SHACKELFORD 0.970 0.982 0.800 0.818
DUNNINGHAM CUNNIGHAM 0.867 0.867 0.917 0.889
NICHLESON NICHULSON 0.926 0.956 0.667 0.889
JONES JOHNSON 0.867 0.893 0.167 0.667
MASSEY MASSIE 0.889 0.933 0.600 0.667
ABROMS ABRAMS 0.889 0.922 0.600 0.833
HARDIN MARTINEZ 0.778 0.778 0.286 0.143
ITMAN SMITH 0.467 0.467 0.200 0.000
JERALDINE GERALDINE 0.926 0.926 0.875 0.889
MARHTA MARTHA 0.944 0.961 0.400 0.667
MICHELLE MICHAEL 0.833 0.900 0.500 0.625
JULIES JULIUS 0.889 0.933 0.800 0.833
TANYA TONYA 0.867 0.880 0.500 0.800
DWAYNE DUANE 0.778 0.800 0.200 0.500
SEAN SUSAN 0.667 0.667 0.200 0.400
JON JOHN 0.778 0.822 0.333 0.750
JON JAN 0.778 0.800 0.000 0.667

TABLE 5 | Matching Results via Matching Strategies

Designated Computer Designated Clerical

Match Pair
Truth Match/Nonmatch Match/Nonmatch
crude 3101 9344/794
param 7899/16 1863/198
param2 9276/23 545/191
em 9587/23 2711192
em2 9639/24 215/189

0.2% False matches among designated matches.

string comparators are first used (from param to
param2). The reason is that disagreements (on a
character-by-character basis) are replaced by partial
agreements and adjustment of the likelihood ratios.!”
The improvement due to the Winkler variant of
the string comparator (from em to em2) is quite
minor. The param method is essentially the same as a
traditional method used by Statistics Canada. After a
review of nine string comparator methods,?? Statistics
Canada provided options for three string compara-
tors in CANLINK software with the Jaro—Winkler
comparator being the default.

The improvement between param2 and em?2 is
not quite as dramatic because it is much more difficult
to show improvements among ‘hard-to-match’ pairs

and because of the differences in the parameter
estimation methods. Iterative refinement is used for
param and param2 (a standard method in CANLINK
software) in which an appropriate subset of pairs is
reviewed, reclassified, and parameters re-estimated.
This method is a type of (partially) supervised learning
and is both labor-intensive and time-consuming.
The parameter estimation variants of Table 5 have
consistently shown greater improvement with other
pairs of files.

The improvement due to the parameters from
em and em2 can be explained because the parameters
are slightly more general than those obtained under
conditional independence (param2). If A¥ represents
agreement or disagreement on the ith field, then the
conditional independence assumption yields

k
P(A N A3 - - - NAF|D) = [ [ P(AFID), (7)
i=1

where D is either M or U. Superficially, the EM
considers different orderings of the form

P(A%, M-+ N A%, D)
k
=[[P(AL 1A%, .., A%, D), (8)
i=1
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where p,i represents the ith entry in a permutation p of
the integers 1 to k. The greater generality of 8 in com-
parison with 7 can yield better fits to the data. We can
reasonably assume that the EM algorithm under the
conditional independence assumption (as the actual
computational methods work) simultaneously chooses
the best permutation p and the best parameters.

In this section, we have demonstrated the very
dramatic improvement in record linkage efficacy
through advancing from seemingly reasonable ad hoc
procedures to procedures that use modern computer-
ized record linkage. The issue that affects statistical
agencies is whether their survey frames are well main-
tained using effective procedures. Upgrading matching
procedures is often as straightforward as replacing
a subroutine that uses ad hoc methods with another
subroutine.

SUMMARY AND CONCLUDING
REMARKS

In this article, we have discussed modern comput-
erized record linkage procedures that are used for
(1) removing duplicate entries from sampling frames
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