Cumulative Prevalence of Child Protective Services Contact for American Children

Christopher Wildeman\textsuperscript{1}
Cornell University

August 6, 2018

\textsuperscript{1}The collector of the original data, the funder, the National Data Archive on Child Abuse and Neglect, and Cornell University and their agents or employees bear no responsibility for the analyses or interpretations herein.
1. My argument
Has two parts

- The first is that all levels of CPS contact appear rare.
- The second is that no level of CPS contact – not even termination of parental rights – actually is a rare event.
Has two parts

- The first is that all levels of CPS contact appear rare.
- The second is that no level of CPS contact — not even termination of parental rights — actually is a rare event.
Has two parts

- The first is that all levels of CPS contact appear rare.
- The second is that no level of CPS contact – not even termination of parental rights – actually is a rare event.
2. Data and methods
I make this argument

- Using the AFCARS and NCANDS data.
- And synthetic cohort life tables (which I will explain).
- The core of my focus is on confirmed maltreatment and foster care placement. I also present results on investigations and brand new estimates on termination of parental rights.
I make this argument

- Using the AFCARS and NCANDS data.
- And synthetic cohort life tables (which I will explain).
- The core of my focus is on confirmed maltreatment and foster care placement. I also present results on investigations and brand new estimates on termination of parental rights.
I make this argument

- Using the AFCARS and NCANDS data.
- And synthetic cohort life tables (which I will explain).
- The core of my focus is on confirmed maltreatment and foster care placement. I also present results on investigations and brand new estimates on termination of parental rights.
I make this argument

- Using the AFCARS and NCANDS data.
- And synthetic cohort life tables (which I will explain).
- The core of my focus is on confirmed maltreatment and foster care placement. I also present results on investigations and brand new estimates on termination of parental rights.
Referrals - 100% (3.4 Million Referrals 6.2 Million Children)

Screened In - 61% (2 Million Referrals 3.7 Million Children)

Screened Out – 39% (1.4 Million Referrals 2.5 Million Children)

Victims - 14% (681,000 Children)

Non-Victims - 47% (2.4 Million Children)

None- 35% (1.7 Million Children)

In-Home – 12% (645,000 Children)

Foster Care - 1% None - 6% (315,000 Children)

In-Home - 4% (224,000 Children) Foster Care – 2%

Combined 4% (228,000 children)
Referrals (1)

- Referrals - 100%
  (3.4 Million Referrals
   6.2 Million Children)

Response (2)

- Screened In - 61%
  (2 Million Referrals
   3.7 Million Children)

- Screened Out - 39%
  (1.4 Million Referrals
   2.5 Million Children)

Victim (3)

- Non-Victims - 47%
  (2.4 Million Children)

- Victims - 14%
  (681,000 Children)

Services (4)

- None - 35%
  (1.7 Million Children)

- In-Home - 12%
  (645,000 Children)

- Foster Care - 2%

- Total - 4%
  (228,000 children)
NCANDS

- National Child Abuse and Neglect Data System.
  - According to the Children’s Bureau, “The NCANDS is a voluntary data collection system that gathers information from all 50 states, the District of Columbia, and Puerto Rico about reports of child abuse and neglect... The data are used to examine trends in child abuse and neglect across the country.”
  - Although voluntary, >44 states have reported since 2004.
NCANDS

National Child Abuse and Neglect Data System.

According to the Children’s Bureau, “The NCANDS is a voluntary data collection system that gathers information from all 50 states, the District of Columbia, and Puerto Rico about reports of child abuse and neglect...The data are used to examine trends in child abuse and neglect across the country.”

Although voluntary, >44 states have reported since 2004.
NCANDS

- National Child Abuse and Neglect Data System.
  - According to the Children’s Bureau, “The NCANDS is a voluntary data collection system that gathers information from all 50 states, the District of Columbia, and Puerto Rico about reports of child abuse and neglect...The data are used to examine trends in child abuse and neglect across the country.”
  - Although voluntary, >44 states have reported since 2004.
NCANDS

- National Child Abuse and Neglect Data System.
  - According to the Children’s Bureau, “The NCANDS is a voluntary data collection system that gathers information from all 50 states, the District of Columbia, and Puerto Rico about reports of child abuse and neglect...The data are used to examine trends in child abuse and neglect across the country.”
  - Although voluntary, >44 states have reported since 2004.
AFCARS

According to the Children’s Bureau, “The AFCARS data contain case level information on all children in foster care for whom State and Tribal title IV-E agencies have responsibility for placement, care or supervision and on children adopted under the auspices of the State and Tribal title IV-E agency.” Reporting is not voluntary. All 50 states since 2000.
AFCARS

- Adoption and Foster Care Analysis and Reporting System.
  - According to the Children’s Bureau, “The AFCARS data contain case level information on all children in foster care for whom State and Tribal title IV-E agencies have responsibility for placement, care or supervision and on children adopted under the auspices of the State and Tribal title IV-E agency.”
  - Reporting is not voluntary. All 50 states since 2000.
AFCARS

- Adoption and Foster Care Analysis and Reporting System.
  - According to the Children’s Bureau, “The AFCARS data contain case level information on all children in foster care for whom State and Tribal title IV-E agencies have responsibility for placement, care or supervision and on children adopted under the auspices of the State and Tribal title IV-E agency.”
  - Reporting is not voluntary. All 50 states since 2000.
AFCARS

Adoption and Foster Care Analysis and Reporting System.

According to the Children’s Bureau, “The AFCARS data contain case level information on all children in foster care for whom State and Tribal title IV-E agencies have responsibility for placement, care or supervision and on children adopted under the auspices of the State and Tribal title IV-E agency.”

Reporting is not voluntary. All 50 states since 2000.
Synthetic cohort (or period) life tables

- Tells us what proportion of a hypothetical cohort of children would ever experience confirmed maltreatment if they were subjected to any given year's age-specific first-confirmed maltreatment rates at each age from birth through age 18.
- I break all results down by race/ethnicity and sex.
- There are two small things to be aware of though...
  - Sensitive to yearly fluctuations (easy to deal with).
  - Could be double-counting some children (harder to deal with).
Synthetic cohort (or period) life tables

- Tells us what proportion of a hypothetical cohort of children would ever experience confirmed maltreatment if they were subjected to any given year’s age-specific first-confirmed maltreatment rates at each age from birth through age 18.
  - I break all results down by race/ethnicity and sex.
- There are two small things to be aware of though...
  - Sensitive to yearly fluctuations (easy to deal with).
  - Could be double-counting some children (harder to deal with).
Synthetic cohort (or period) life tables

▶ Tells us what proportion of a hypothetical cohort of children would ever experience confirmed maltreatment if they were subjected to any given year’s age-specific first-confirmed maltreatment rates at each age from birth through age 18.
  ▶ I break all results down by race/ethnicity and sex.

▶ There are two small things to be aware of though...
  ▶ Sensitive to yearly fluctuations (easy to deal with).
  ▶ Could be double-counting some children (harder to deal with).
Synthetic cohort (or period) life tables

- Tells us what proportion of a hypothetical cohort of children would ever experience confirmed maltreatment if they were subjected to any given year’s age-specific first-confirmed maltreatment rates at each age from birth through age 18.
- I break all results down by race/ethnicity and sex.
- There are two small things to be aware of though...
  - Sensitive to yearly fluctuations (easy to deal with).
  - Could be double-counting some children (harder to deal with).
Synthetic cohort (or period) life tables

- Tells us what proportion of a hypothetical cohort of children would ever experience confirmed maltreatment if they were subjected to any given year’s age-specific first-confirmed maltreatment rates at each age from birth through age 18.
  - I break all results down by race/ethnicity and sex.
- There are two small things to be aware of though...
  - Sensitive to yearly fluctuations (easy to deal with).
  - Could be double-counting some children (harder to deal with).
Synthetic cohort (or period) life tables

- Tells us what proportion of a hypothetical cohort of children would ever experience confirmed maltreatment if they were subjected to any given year’s age-specific first-confirmed maltreatment rates at each age from birth through age 18.
  - I break all results down by race/ethnicity and sex.
- There are two small things to be aware of though...
  - Sensitive to yearly fluctuations (easy to deal with).
  - Could be double-counting some children (harder to deal with).
# Building a synthetic cohort life table

## Cumulative Risk of Confirmed Maltreatment by Age 10, 2005

<table>
<thead>
<tr>
<th>Age</th>
<th>$nD_x$</th>
<th>$nN_x$</th>
<th>$nAN_x$</th>
<th>$nmx$</th>
<th>$nqx$</th>
<th>$0c_x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Building a synthetic cohort life table

### Cumulative Risk of Confirmed Maltreatment by Age 10, 2005

<table>
<thead>
<tr>
<th>Age</th>
<th>( nD_x )</th>
<th>( nN_x )</th>
<th>( nAN_x )</th>
<th>( nmx )</th>
<th>( nqx )</th>
<th>( 0c_x )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,997</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1,071</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1,001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>957</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>924</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>937</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>905</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>836</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>763</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>713</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Building a synthetic cohort life table

<table>
<thead>
<tr>
<th>Age</th>
<th>$nD_x$</th>
<th>$nN_x$</th>
<th>$nAN_x$</th>
<th>$nmx$</th>
<th>$nqx$</th>
<th>$0c_x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,997</td>
<td>4,095,537</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1,071</td>
<td>4,098,288</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1,001</td>
<td>4,058,368</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>957</td>
<td>4,049,968</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>924</td>
<td>4,052,579</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>937</td>
<td>3,931,274</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>905</td>
<td>3,885,471</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>836</td>
<td>3,890,518</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>763</td>
<td>3,907,974</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>713</td>
<td>3,977,966</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Building a synthetic cohort life table

<table>
<thead>
<tr>
<th>Age</th>
<th>$nD_x$</th>
<th>$nN_x$</th>
<th>$nAN_x$</th>
<th>$nmx$</th>
<th>$nqx$</th>
<th>$0c_x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,997</td>
<td>4,095,537</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1,071</td>
<td>4,098,288</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1,001</td>
<td>4,058,368</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>957</td>
<td>4,049,968</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>924</td>
<td>4,052,579</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>937</td>
<td>3,931,274</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>905</td>
<td>3,885,471</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>836</td>
<td>3,890,518</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>763</td>
<td>3,907,974</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>713</td>
<td>3,977,966</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Building a synthetic cohort life table

#### Cumulative Risk of Confirmed Maltreatment by Age 10, 2005

<table>
<thead>
<tr>
<th>Age</th>
<th>$nD_x$</th>
<th>$nN_x$</th>
<th>$nAN_x$</th>
<th>$nq_x$</th>
<th>$m_x$</th>
<th>$c_x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,997</td>
<td>4,095,537</td>
<td></td>
<td>.020</td>
<td></td>
<td>.019</td>
</tr>
<tr>
<td>2</td>
<td>1,071</td>
<td>4,098,288</td>
<td></td>
<td>.019</td>
<td></td>
<td>.019</td>
</tr>
<tr>
<td>3</td>
<td>1,001</td>
<td>4,058,368</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>957</td>
<td>4,049,968</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>924</td>
<td>4,052,579</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>937</td>
<td>3,931,274</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>905</td>
<td>3,885,471</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>836</td>
<td>3,890,518</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>763</td>
<td>3,907,974</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>713</td>
<td>3,977,966</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
# Building a synthetic cohort life table

## Cumulative Risk of Confirmed Maltreatment by Age 10, 2005

<table>
<thead>
<tr>
<th>Age</th>
<th>(nD_x)</th>
<th>(nN_x)</th>
<th>(nAN_x)</th>
<th>(nm_x)</th>
<th>(nq_x)</th>
<th>(0c_x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,997</td>
<td>4,095,537</td>
<td>(nAN_x)</td>
<td>(nD_x)</td>
<td>(nN_x)</td>
<td>(nAN_x)</td>
</tr>
<tr>
<td>2</td>
<td>1,071</td>
<td>4,098,288</td>
<td>(nAN_x)</td>
<td>(nD_x)</td>
<td>(nN_x)</td>
<td>(nAN_x)</td>
</tr>
<tr>
<td>3</td>
<td>1,001</td>
<td>4,058,368</td>
<td>(nAN_x)</td>
<td>(nD_x)</td>
<td>(nN_x)</td>
<td>(nAN_x)</td>
</tr>
<tr>
<td>4</td>
<td>957</td>
<td>4,049,968</td>
<td>(nAN_x)</td>
<td>(nD_x)</td>
<td>(nN_x)</td>
<td>(nAN_x)</td>
</tr>
<tr>
<td>5</td>
<td>924</td>
<td>4,052,579</td>
<td>(nAN_x)</td>
<td>(nD_x)</td>
<td>(nN_x)</td>
<td>(nAN_x)</td>
</tr>
<tr>
<td>6</td>
<td>937</td>
<td>3,931,274</td>
<td>(nAN_x)</td>
<td>(nD_x)</td>
<td>(nN_x)</td>
<td>(nAN_x)</td>
</tr>
<tr>
<td>7</td>
<td>905</td>
<td>3,885,471</td>
<td>(nAN_x)</td>
<td>(nD_x)</td>
<td>(nN_x)</td>
<td>(nAN_x)</td>
</tr>
<tr>
<td>8</td>
<td>836</td>
<td>3,890,518</td>
<td>(nAN_x)</td>
<td>(nD_x)</td>
<td>(nN_x)</td>
<td>(nAN_x)</td>
</tr>
<tr>
<td>9</td>
<td>763</td>
<td>3,907,974</td>
<td>(nAN_x)</td>
<td>(nD_x)</td>
<td>(nN_x)</td>
<td>(nAN_x)</td>
</tr>
<tr>
<td>10</td>
<td>713</td>
<td>3,977,966</td>
<td>(nAN_x)</td>
<td>(nD_x)</td>
<td>(nN_x)</td>
<td>(nAN_x)</td>
</tr>
</tbody>
</table>
### Building a synthetic cohort life table

#### Cumulative Risk of Confirmed Maltreatment by Age 10, 2005

<table>
<thead>
<tr>
<th>Age</th>
<th>$nD_x$</th>
<th>$nN_x$</th>
<th>$nAN_x$</th>
<th>$nm_x$</th>
<th>$nq_x$</th>
<th>$c_x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,997</td>
<td>4,095,537</td>
<td></td>
<td>.020</td>
<td>.019</td>
<td>.019</td>
</tr>
<tr>
<td>2</td>
<td>1,071</td>
<td>4,098,288</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1,001</td>
<td>4,058,368</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>957</td>
<td>4,049,968</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>924</td>
<td>4,052,579</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>937</td>
<td>3,931,274</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>905</td>
<td>3,885,471</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>836</td>
<td>3,890,518</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>763</td>
<td>3,907,974</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>713</td>
<td>3,977,966</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Building a synthetic cohort life table

### Cumulative Risk of Confirmed Maltreatment by Age 10, 2005

<table>
<thead>
<tr>
<th>Age</th>
<th>( nD_x )</th>
<th>( nN_x )</th>
<th>( nAN_x )</th>
<th>( n\times m_x )</th>
<th>( n\times q_x )</th>
<th>( n\times c_x )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,997</td>
<td>4,095,537</td>
<td></td>
<td>.020</td>
<td>.019</td>
<td>.019</td>
</tr>
<tr>
<td>2</td>
<td>1,071</td>
<td>4,098,288</td>
<td>4,016,450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1,001</td>
<td>4,058,368</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>957</td>
<td>4,049,968</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>924</td>
<td>4,052,579</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>937</td>
<td>3,931,274</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>905</td>
<td>3,885,471</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>836</td>
<td>3,890,518</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>763</td>
<td>3,907,974</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>713</td>
<td>3,977,966</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
# Building a synthetic cohort life table

## Cumulative Risk of Confirmed Maltreatment by Age 10, 2005

<table>
<thead>
<tr>
<th>Age</th>
<th>( nD_x )</th>
<th>( nN_x )</th>
<th>( nAN_x )</th>
<th>( nmx )</th>
<th>( nqx )</th>
<th>( 0c_x )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,997</td>
<td>4,095,537</td>
<td></td>
<td>.020</td>
<td>.019</td>
<td>.019</td>
</tr>
<tr>
<td>2</td>
<td>1,071</td>
<td>4,098,288</td>
<td>4,016,450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1,001</td>
<td>4,058,368</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>957</td>
<td>4,049,968</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>924</td>
<td>4,052,579</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>937</td>
<td>3,931,274</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>905</td>
<td>3,885,471</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>836</td>
<td>3,890,518</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>763</td>
<td>3,907,974</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>713</td>
<td>3,977,966</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Building a synthetic cohort life table

<table>
<thead>
<tr>
<th>Age</th>
<th>$nD_x$</th>
<th>$nN_x$</th>
<th>$nA\bar{N}_x$</th>
<th>$n\bar{m}_x$</th>
<th>$n\bar{q}_x$</th>
<th>$c_x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,997</td>
<td>4,095,537</td>
<td></td>
<td>.020</td>
<td>.019</td>
<td>.019</td>
</tr>
<tr>
<td>2</td>
<td>1,071</td>
<td>4,098,288</td>
<td>4,016,450</td>
<td>.011</td>
<td>.011</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1,001</td>
<td>4,058,368</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>957</td>
<td>4,049,968</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>924</td>
<td>4,052,579</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>937</td>
<td>3,931,274</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>905</td>
<td>3,885,471</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>836</td>
<td>3,890,518</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>763</td>
<td>3,907,974</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>713</td>
<td>3,977,966</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
# Building a synthetic cohort life table

## Cumulative Risk of Confirmed Maltreatment by Age 10, 2005

<table>
<thead>
<tr>
<th>Age</th>
<th>( nD_x )</th>
<th>( nN_x )</th>
<th>( nAN_x )</th>
<th>( nmx )</th>
<th>( nqx )</th>
<th>( ocx )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,997</td>
<td>4,095,537</td>
<td></td>
<td>0.020</td>
<td>0.019</td>
<td>0.019</td>
</tr>
<tr>
<td>2</td>
<td>1,071</td>
<td>4,098,288</td>
<td>4,016,450</td>
<td>0.011</td>
<td>0.011</td>
<td>0.031</td>
</tr>
<tr>
<td>3</td>
<td>1,001</td>
<td>4,058,368</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>957</td>
<td>4,049,968</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>924</td>
<td>4,052,579</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>937</td>
<td>3,931,274</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>905</td>
<td>3,885,471</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>836</td>
<td>3,890,518</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>763</td>
<td>3,907,974</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>713</td>
<td>3,977,966</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Argument 1
Proportion of Children with Confirmed Maltreatment

For Males

Year
Proportion of Children
2004 2006 2008 2010

For Females

Year
Proportion of Children with Confirmed Maltreatment
Total
White
Black
Proportion of Children with Confirmed Maltreatment

For Males

For Females

Year

Proportion of Children

2004 2006 2008 2010

0 0.005 0.01 0.015 0.02

Year

Proportion of Children with Confirmed Maltreatment

Total                   
White
Black
Hispanic Origin
Proportion of Children in Foster Care on September 30

For Males

Year

Proportion of Children

2001 2003 2005 2007 2009 2011

For Females

Year

Proportion of Children

2001 2003 2005 2007 2009 2011

Total

White
Proportion of Children in Foster Care on September 30

For Males

<table>
<thead>
<tr>
<th>Year</th>
<th>Total</th>
<th>White</th>
<th>Black</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>0.02</td>
<td>0.01</td>
<td>0.005</td>
</tr>
<tr>
<td>2003</td>
<td>0.015</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>2005</td>
<td>0.01</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>2007</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>2009</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>2011</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
</tbody>
</table>

For Females

<table>
<thead>
<tr>
<th>Year</th>
<th>Total</th>
<th>White</th>
<th>Black</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>0.02</td>
<td>0.01</td>
<td>0.005</td>
</tr>
<tr>
<td>2003</td>
<td>0.015</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>2005</td>
<td>0.01</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>2007</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>2009</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>2011</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
</tbody>
</table>
Proportion of Children in Foster Care on September 30

For Males

Year
Proportion of Children in Foster Care on September 30

For Females

Year
Proportion of Children in Foster Care on September 30
4. You can’t go back in time (a prologue to Argument 2)
Age–Specific Risk for First Confirmed Maltreatment, 2005

For Males

For Females

Age−Specific Risk for First Confirmed Maltreatment, 2005

Total
Age–Specific Risk for First Confirmed Maltreatment, 2005

For Males

For Females

- Total
- White

Age

Proportion

Age

0 2 4 6 8 10 12 14 16

0.04
0.03
0.02
0.01
0 0.01 0.02 0.03 0.04

0 2 4 6 8 10 12 14 16

0 2 4 6 8 10 12 14 16
Age-Specific Risk for First Confirmed Maltreatment, 2005

For Males

For Females

[Graph showing age-specific risk for first confirmed maltreatment, 2005, with different lines representing total, White, Black, Hispanic Origin, and Asian populations.]
Age-Specific Risk for First Confirmed Maltreatment, 2005

For Males

For Females

- Total
- White
- Black
- Hispanic Origin
- Asian
- Native American

Age

Proportion
Age-Specific Risks of First-Time Foster Care Placement, 2005

For Males

For Females

Proportion

Age

0 2 4 6 8 10 12 14 16

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Total

White
Age-Specific Risks of First-Time Foster Care Placement, 2005

For Males and Females
Age-Specific Risks of First-Time Foster Care Placement, 2005

For Males

- Total
- White
- Black
- Hispanic Origin
- Asian

For Females

- Total
- White
- Black
- Hispanic Origin
- Asian

Age
Proportion
Age-Specific Risks of First-Time Foster Care Placement, 2005
Age-Specific Risks of First-Time Foster Care Placement, 2005

For Males

Total
White
Black
Hispanic Origin
Asian
Native American

For Females

Total
White
Black
Hispanic Origin
Asian
Native American
5. Argument 2
Cumulative Risk of Confirmed Maltreatment by Demographic Group

For Males

Year

Cumulative Risk

2004 2006 2008 2010

For Females

Year

Cumulative Risk

2004 2006 2008 2010
Cumulative Risk of Confirmed Maltreatment by Demographic Group

For Males

Cumulative Risk

Year

2004 2006 2008 2010

For Females

Cumulative Risk of Confirmed Maltreatment by Demographic Group

Year

2004 2006 2008 2010
Cumulative Risk of Confirmed Maltreatment by Demographic Group

For Males

For Females

- Total
- White
- Black
- Hispanic Origin
- Asian
- Native American
Cumulative Risk of Foster Care Placement by Age 18

For Males

For Females

Year
Cumulative Risk
Cumulative Risk of Foster Care Placement by Age 18
Cumulative Risk of Foster Care Placement by Age 18

For Males

Year
Cumulative Risk

2001 2003 2005 2007 2009
0 0.03 0.06 0.09 0.12 0.15

Total
White

For Females

Year
Cumulative Risk

2001 2003 2005 2007 2009

Total
White
Cumulative Risk of Foster Care Placement by Age 18

For Males

Year
Cumulative Risk
Cumulative Risk of Foster Care Placement by Age 18

For Females

Year
Cumulative Risk
Cumulative Risk of Foster Care Placement by Age 18
Cumulative Risk of Foster Care Placement by Age 18

For Males

Year
Cumulative Risk

Total
White
Black
Hispanic Origin

For Females

Year
Cumulative Risk

Total
White
Black
Hispanic Origin
6. Earlier and later too (An epilogue to Argument 2)
Inequality in the Cumulative Prevalence of Child Welfare System Contact

Cumulative Prevalence by Race

Maltreatment Investigation

Confirmed Maltreatment

Foster Care Placement

Termination of Parental Rights

Inequality in Risk by Race (Compared to White Children)
7. Thanks so much for your time